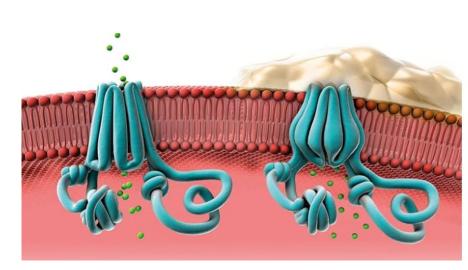
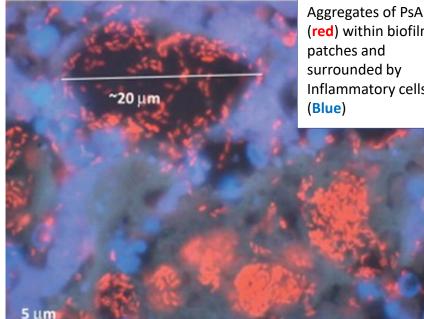
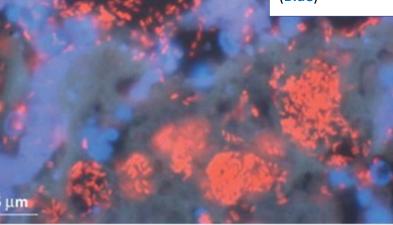
A study evaluating phage therapy in cystic fibrosis subjects with **Pseudomonas aeruginosa infection**



Jenia Gold², Urania Rappo¹, Maya Kahan-Hanum², Xilla Ussery¹, Edith Kario², Hadas Tamar Nevenzal², Iddo Nadav Weiner², Jagoda Jablonska² Nufar Buchshtab², Vered Lev², Yaron Tzur², Yulia Zarchin², Myriam Golembo², Regis Vilchez¹, Eitan Kerem³, Merav Bassan²


> ¹ BiomX Inc., Cambridge, Massachusetts, US; ² BiomX Ltd, Ness Ziona, Israel; ³Department of Pediatrics and CF Center, Hadassah University Hospital, Jerusalem, Israel

Cystic Fibrosis (CF)


- The CFTR protein is present on epithelial cells throughout the body. In CF lungs, mutations in CFTR cause thick and sticky mucus that provides an environment for bacteria to infect and propagate.
- Pseudomonas aeruginosa (PsA) is a main pathogen that colonizes the lungs of adult CF patients. ٠
- The disease causes severe damage to the lungs, digestive system and other organs with > 80% of deaths from respiratory failure
- 105K individuals are estimated to live with CF worldwide, with 33k in the US alone •

Normal (left) and abnormal CFTR proteins (right)

(**red**) within biofilm surrounded by Inflammatory cells

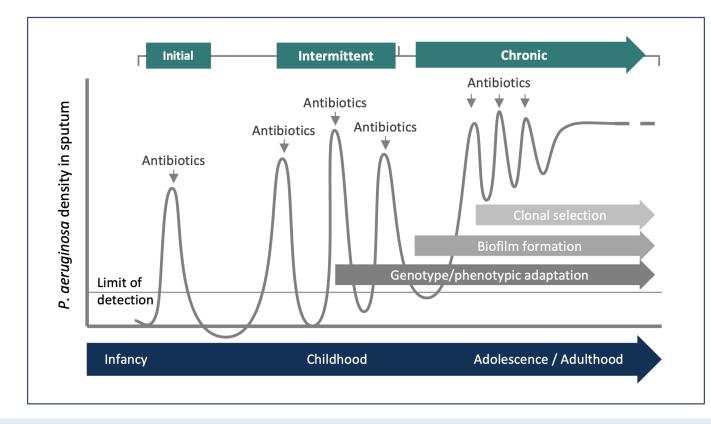
PsA bacteria lead to persistent inflammation causing tissue damage and eventually necrosis of lung tissue

BX004

- **Product** Proprietary phage cocktail targeting *PsA*
- **Patient population** CF patients with chronic *PsA* lung infections
- **Delivery** Inhalation
- **Key features** Potentially effective on antibiotic resistant strains, enables breakdown of biofilm

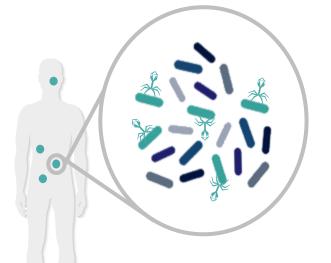
Phage cocktail design

BX004 on antibiotic resistant strains


BX004 was active in killing all 96 strains described below displaying multiple antibiotic resistant genes

Presence/absence of known genes conferring antibiotic resistance

Bacterial infection and antibiotic resistance


Over the last 2 decades, with the rise of antibiotic resistance, benefits of inhaled antibiotics have diminished. After prolonged and repeated antibiotic courses, increased resistance to antibiotics has lowered efficacy, creating a large unmet need for CF patients suffering from Chronic PsA.

Phage therapy

1. SPECIFIC

Each phage binds only to specific bacterial strains

2. KILLING MECHANISM ORTHOGONAL TO ANTIBIÓTICS

Lysin proteins burst bacterial cell wall from within

3. BREAKDOWN BIOFILM

Phage can breakdown biofilm (a polysaccharide mesh secreted by bacteria)

1 1 7

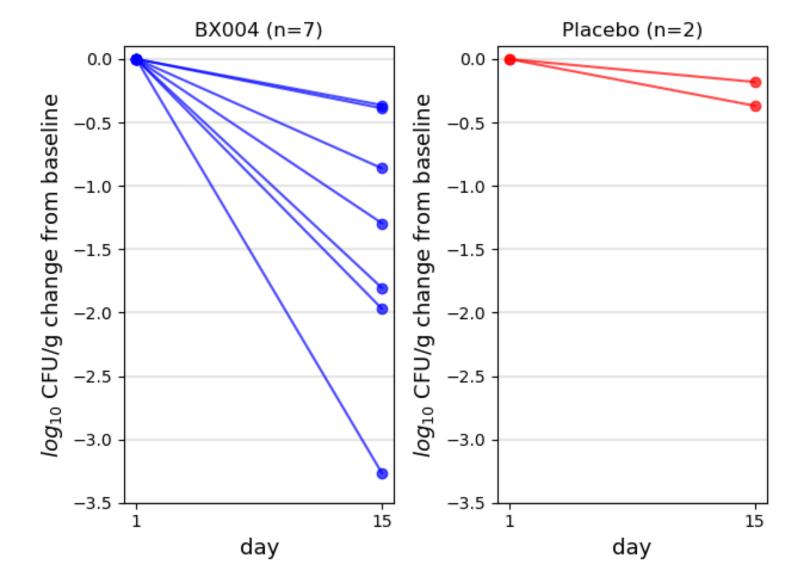
aadA1 - Tabaa aadA2 - Tabaa aadA2 - Tabaa aadA2 - Tabaa	t(2")-la -	bh(3')-il -{		Dh(6)-id - blaAER -		A-1028 -	A-1032 - D.	A-1131	XA-395 -	XA-396 -	XA-486 - 11 11 11 11 11 11 11 11 11 11 11 11 1	XA-400 - 2010 - 20	0XA-50 -	XA-847 - XA-	XA-848 - XA-848 - XA-848 - XA-848 - XA-848 - XA-848 - XA-851 - XA	XA-904	XA-905 -	XA-914			DC-121	DC-124				0c-22/ - PDC-24 -		PDC-30 -	PDC-31	PDC-45 -	PDC-46 -	aPDC-5 -		PDC-60 -		iatsst - cata	catB7 -		crpP - fosa -	mexA -	mexe -
aadA1 - aadA2 -	ant(2")-la -	aph(3')-II - - II-('3')-IIh -	- dl-('5/inde - dl-('2/inde	aph(6)-ld - hla∆FR -	blaOXA -	blaOXA-1028 -	blaOXA-1032 - blaOXA-1127 -	blaOXA-1131 -	blaOXA-395 -	blaOXA-396 -	blaOXA-486 - blaOXA-488 -	blaOXA-494 -	blaOXA-50 -	blaOXA-847 -	blaOXA-848 - blaOXA-851 -	blaOXA-904 -	blaOXA-905 -	blaOXA-914 - blaOXA-937 -	blaPDC -	blaPDC-1 -	blaPDC-121 - blaPDC-123 -	blaPDC-124 -	blaPDC-147 - blaPDC-15 -	blaPDC-16 -	blaPDC-168 -	blaPDC-227 - blaPDC-24 -	blaPDC-3 -	blaPDC-30 -	blaPDC-31 - blaPDC-34 -	blaPDC-45 -	blaPDC-46 -	blaPDC-5 - blaphC-520	blaPDC-6 -	blaPDC-60 -	blaPDC-8 -	DIARSCI - catA -	catB7 -	cmIA10 -	- rpr - fosA -	- mexA	mexE -

Clinical study design												
Phase 1b/2a – Part 1 (actual n=9)	Phase 1b/2a – Part 2 (planned n=24)											
Objectives	Objectives											
 Safety, PK and microbiologic/clinical activity 	 Safety and efficacy 											
9 Subjects	At least 24 subjects											
 7 received nebulized BX004 phage therapy 	 16 receive nebulized BX004 phage therapy 											
 2 received nebulized placebo 	 8 receive nebulized placebo 											
 7 days duration (3 ascending, 4 multiple 	 10 days duration of treatment 											
dosing)												
En	Endpoints											
 Safety and tole 	 Safety and tolerability 											
Decrease in Ps.	Decrease in <i>PsA</i> burden											
Sputum pharm	 Sputum pharmacokinetics 											
 FEV1 (forced e 	 FEV1 (forced expiratory volume) 											
Study	Study Population											
CF patients wit	ch chronic <i>PsA</i> infection											

Phase 1b/2a – Part 1 results

4. AMPLIFY

Phage components multiply and assemble within bacterial cell



Key challenges in developing phage therapies

- Host range Infecting a narrow range of bacterial strains •
- **Resistance** Bacterial defense systems (e.g., CRISPR) ٠
- **Biofilm** Bacteria producing mucoid layer that is hard to penetrate ۲

Mean *P. aeruginosa* CFU reduction at Day 15 (compared to Baseline):

-1.42 log₁₀ CFU/g (BX004) compared to -0.28 log₁₀ CFU/g (placebo) on top of standard of care inhaled antibiotics

