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Abstract

Recent studies on metatranscriptome revealed the actual ubiquity and diversity of non-dsDNA viral particles are largely understudied, and in particular single strand RNA (ssRNA) phages are

especially prominent in soil ecosystems (1-6). Despite their importance, shotgun RNA sequencing efforts only provide limited and partial information about these novel ssRNA phages, and

especially fail to associate these phages with their host bacteria, infectivity pathways, mechanism of host cell take-over and host lysis. For example, though ssRNA phages have been known to

bind conjugative pili elements for infectivity, the knowledge and genetic basis of their infection and resistance has been limited to a couple of canonical phages (7). These early studies

primarily isolated phage-resistant host mutants and characterized them using classical genetic approaches. With the recent discovery of tens of thousands of novel ssRNA phages there is a need

for high-throughput technologies to characterize ssRNA phage-host interactions. Here we adopt recently developed two high-throughput genetic technologies (8), Random barcode transposon

site sequencing (RB-TnSeq) and Dual-barcoded shotgun expression library sequencing (Dub-seq) to a model E. coli strain for discovering host factors, and gene dosage barriers crucial in

ssRNA phage infection and bacterial resistance. We resourced a collection of ssRNA phages including three model ssRNA phages, MS2, Fr, and Qβ to map genetic landscape important in

phage infection. Using genome-wide loss-of-function (LOF) and gain-of-function (GOF) genetic technologies, we are able to confirm the importance of conjugative pili elements as well as

uncover other host factors playing an important role in ssRNA phage infective pathways. To the best of our knowledge, this is the first such report to systematically characterize non-dsDNA

phage-host interactions and opens up an avenue to extend it to the other E. coli strains and non-E. coli phages.
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Ubiquity and diversity of ssRNA phages in the RNA Virus Metatranscriptome (RVMT) study (6). (A)

Preliminary analysis of global genome diversity of Levi-like ssRNA phages from publicly available

metatranscriptomes. The genome diversity represented as a network indicates that the few ssRNA phages

isolated so far are highlighted as red dots, while gray genomes are all uncultivated. (B) Rarefaction curves

of leviviruses distinguished by different colors based on the environment types.
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Overview of high-throughput RB-TnSeq and Dub-seq genome-wide screens. Previously developed

barcoded LOF technology (RB-TnSeq) and a GOF technology (Dub-seq) in E. coli strain were used

to screen for host factors important in phage infection and resistance (8). We analyzed 4 diverse

ssRNA phages (MS2, Fr, R17 and Qβ) for RB-TnSeq and 3 ssRNA (MS2, Fr and Qβ) phages for

Dub-seq, belonging to genogroup I and III Leviviruses and performed pooled fitness screens in

planktonic format. Disruption or overexpression of certain genes provide fitness to host in the

presence of phages, and we monitor these changes by quantifying the abundance of the DNA barcode

associated with each strain. The individual strain abundances are then converted to gene fitness

scores (normalized log2 change in the abundance of mutants in that gene). Dub-seq, dual-barcoded

shotgun expression library sequencing; MOI, multiplicity of infection; RB-TnSeq, random barcode

transposon site sequencing.

Heatmap of E. coli C3000 RB-TnSeq library data for 4 ssRNA phages at different MOI. Top genes with

high-confidence effects and a gene fitness score of ≥ 6.1 in at least one phage assay are shown. The mapped

protein names and functions that encode known receptors or predicted proteins for unknown genes are

given on the right side of the chart. All ssRNA phages showed high fitness score for pilin related phage

receptors including some new or hypothetical proteins. Competitive growth experiment was performed

using two biological replicate (n = 2) including 2 technical replicate for each phage with RB-TnSeq library.

RNA phages as under-estimated players in ecosystem RB-TnSeq identifies known receptors and host factors for all 4 ssRNA phages

Mapping genetic determinants of phage resistance using high-throughput GOF

Genome-wide Dub-seq screens for 3 ssRNA phages at different MOIs. Overexpression or higher dosage

of these genes interferes with the phage infectivity cycle and imparts fitness benefits to the host. Only

genes with high-confidence effects and gene fitness score of ≥ 2.3 in at least one phage assay are shown.
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Systematic study of ssRNA-host interactions (A) Schematics of ssRNA phage enrichment and isolations. A

key goal of this project is to develop a standardized method to isolate non-E. coli phages (ongoing work).

(B) Applying high-throughput genetic screens to uncover host factors important in ssRNA phage infection

and study ssRNA phage infection modes and resistance phenotypes (current poster).
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